Author's personal copy Thermophysical properties of multi-wall carbon nanotube bundles at elevated temperatures up to 830 K

نویسندگان

  • Xiaopeng Huang
  • Jianmei Wang
  • Gyula Eres
  • Xinwei Wang
چکیده

Thermal transport measurements in multi-wall carbon nanotube (MWCNT) bundles at elevated temperatures up to 830 K are reported using a novel generalized electrothermal technique. Compared with individual CNTs, the thermal conductivity (k) of MWCNT bundles is two to three orders of magnitude lower, suggesting the thermal transport in MWCNT bundles is dominated by the tube-to-tube thermal contact resistance. The effective density for the two MWCNT bundles, which is difficult to measure using other techniques, is determined at 116 kg/m and 234 kg/m. The thermal diffusivity slightly decreases with temperature while k exhibits a small increase with temperature up to 500 K and then decreases. For the first time, the behavior of specific heat for MWCNTs above room temperature is determined. The specific heat is close to graphite at 300–400 K but is lower than that for graphite above 400 K, indicating that the behavior of phonons in MWCNT bundles is dominated by boundary scattering rather than by the three-phonon Umklapp process. The analysis of the radiation heat loss suggests that it needs to be considered when measuring the thermophysical properties of micro/nano wires of high aspect ratios at elevated temperatures, especially for individual MWCNTs due to their extremely small diameters. 2010 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Study on Thermophysical Properties of Multiwalled Carbon Nanotubes (RESEARCH NOTE)

Nanofluids are the heat transfer fluids having remarkable thermal properties. The paper presents the experimental analysis of thermal conductivity, density, specific heat and viscosity of multiwalled carbon nanoparticles dispersed in water at various temperatures and particle concentrations. To examine the forced convection heat transfer of Multiwalled Carbon Nanotubes (MWCNT)-water nanofluid, ...

متن کامل

High Resolution Image with Multi-wall Carbon Nanotube Atomic Force Microscopy Tip (RESEARCH NOTE)

In this paper, a simple and reproducible approach for attaching the multi-wall carbon nanotubes (MWNTs) to the apex of the atomic force microscope probe has been proposed. For this purpose, the dielectrophoresis method was applied due to its simple performance, cheapness and reliability. In this method, various parameters such as voltage, frequency, concentration of carbon nanotubes solution an...

متن کامل

Simultaneous Voltammetric Measurement of Ascorbic Acid, Epinephrine, Uric Acid and Tyrosine at a Glassy Carbon Electrode Modified with Nanozeolite-Multiwall Carbon Nanotube

In this study, incorporation of iron ion-doped natrolite nanozeolite, multi-wall carbon nanotubes into chitosan-coated glassy carbon electrode for the simultaneous determination of ascorbic acid, epinephrine, uric acid and tyrosine is studied. The results show that the combination of multi-wall carbon nanotubes and iron ion-doped natrolite zeolite causes a dramatic enhancement in the sensitivit...

متن کامل

Effective Mechanical Properties of Nanocomposites Reinforced With Carbon Nanotubes Bundle

Nanocomposites made of Carbon Nanotube (CNT) bundles have attracted researchers’ attention due to their unusual properties such as: light weight, flexibility and stiffness.  In this paper, the effects of straight and rope-shaped bundles on nanocomposite effective mechanical properties are investigated.  First, FEA models are created consisting of CNTs with different shapes of straight and rope-...

متن کامل

Measurement of Thermophysical Properties of Pure and Mixture of Alkanolamines from 288.15-323.15 K

Density, viscosity and refractive index of pure, binary and ternary mixtures of diethanolamine (DEA) and methyl diethanolamine (MDEA) with water have been measured at different temperatures from 288.15 K to 323.15 K at atmospheric pressure. Also, this study presents the effects of mixture composition and temperature upon these thermo- physical properties. To measure the density and refractive i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011